A Graphical Model for Rapid Obstacle Image-Map Estimation from Unmanned Surface Vehicles

نویسندگان

  • Matej Kristan
  • Janez Pers
  • Vildana Sulic Kenk
  • Stanislav Kovacic
چکیده

Obstacle detection plays an important role in unmanned surface vehicles (USV). Continuous detection from images taken onboard the vessel poses a particular challenge due to the diversity of the environment and the obstacle appearance. An obstacle may be a floating piece of wood, a scuba diver, a pier, or some other part of a shoreline. In this paper we tackle this problem by proposing a new graphical model that affords a fast and continuous obstacle image-map estimation from a single video stream captured onboard a USV. The model accounts for the semantic structure of marine environment as observed from USV by imposing weak structural constraints. A Markov random field framework is adopted and a highly efficient algorithm for simultaneous optimization of model parameters and segmentation mask estimation is derived. Our approach does not require computationally intensive extraction of texture features and runs faster than real-time. We also present a new, challenging, dataset for segmentation and obstacle detection in marine environments, which is the largest annotated dataset of its kind. Results on this dataset show that our model compares favorably in accuracy to the related approaches, requiring a fraction of computational effort.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stereo obstacle detection for unmanned surface vehicles by IMU-assisted semantic segmentation

A new obstacle detection algorithm for unmanned surface vehicles (USVs) is presented. A state-of-the-art graphical model for semantic segmentation is extended to incorporate boat pitch and roll measurements from the on-board inertial measurement unit (IMU), and a stereo verification algorithm that consolidates tentative detections obtained from the segmentation is proposed. The IMU readings are...

متن کامل

A Hybrid Algorithm based on Deep Learning and Restricted Boltzmann Machine for Car Semantic Segmentation from Unmanned Aerial Vehicles (UAVs)-based Thermal Infrared Images

Nowadays, ground vehicle monitoring (GVM) is one of the areas of application in the intelligent traffic control system using image processing methods. In this context, the use of unmanned aerial vehicles based on thermal infrared (UAV-TIR) images is one of the optimal options for GVM due to the suitable spatial resolution, cost-effective and low volume of images. The methods that have been prop...

متن کامل

Obstacle Avoidance For Unmanned Air Vehicles Using Image Feature Tracking

This paper discusses a computer vision algorithm and a control law for obstacle avoidance for small unmanned air vehicles using a video camera as the primary sensor. Small UAVs are used for low altitude surveillance flights where unknown obstacles can be encountered. Small UAVs can be given the capability to navigate in uncertain environments if obstacles are identified. This paper presents an ...

متن کامل

Autonomous Exploration in Unknown Urban Environments for Unmanned Aerial Vehicles

In this paper, we present an autonomous exploration method for unmanned aerial vehicles in unknown urban environment. We address two major aspects of explorationmap building and obstacle avoidanceby combining model predictive control (MPC) with a local obstacle map builder. An onboard laser scanner is used to build the online map of obstacles around the vehicle during the flight. A real-time MP...

متن کامل

On Visual Real Time Mapping for Unmanned Aerial Vehicles

This paper addresses the challenge of a real-time capable vision system in the task of trajectory and surface reconstruction by aerial image sequences. The goal is to present the design, methods and strategies of a real-time capable vision system solving the mapping task for secure navigation of small UAVs with a single camera. This includes the estimation process, map representation, initializ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014